Functional linkages between replication proteins of genes 1, 3 and 5 of Bacillus subtilis phage φ29.
نویسندگان
چکیده
Gene 1 product (gp1) of Bacillus subtilis phage φ29 has been shown to be involved in viral DNA replication in vivo, but the essential role is still unknown. As part of an ongoing effort to understand the role of gp1 in viral DNA replication, we investigated genetic interaction between gene 1 and other viral genes. Because φ29 mutants which do not produce functional gp1 show temperature-sensitive growth, we isolated temperature-resistant phages from the φ29 gene 1 mutants, and eventually, obtained nine extragenic suppressors. These suppressor mutations were located in two essential genes for φ29 DNA replication in vivo: gene 3 encoding terminal/primer protein (gp3) or gene 5 encoding viral single-stranded DNA binding protein (gp5). Most of these mutations resulted in single amino acid substitutions in the products. By trans-complementation assay, we confirmed that the absence of gp1 at non-permissive temperature can be compensated by the suppressors which have the single amino acid substitution in either gp5 or gp3. These results indicate that gp1 has functional relationship to gp5 and gp3. From the positions of amino acid substitutions in gp3, we propose its new regulatory subdomain at which other molecules including gp1 would interact with and regulate functions of gp3.
منابع مشابه
Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage Φ29 is required for viral DNA replication in growth-temperature dependent fashion.
In the absence of viral single-stranded DNA binding protein gp5, Bacillus subtilis phage φ29 failed to grow and to replicate its genome at 45 °C, while it grew and replicated normally at 30 °C and 42 °C. This indicates that gp5 is dispensable for φ29 DNA replication at 42 °C and lower temperatures.
متن کاملDNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication
Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA...
متن کاملPhage φ29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis
Instituto de Biología Molecular “Eladio Viñuela” (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain; and Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University ...
متن کاملTerminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Phi29.
The DNA amplification performed by terminal protein-primed replication systems has not yet been developed for its general use to produce high amounts of DNA linked to terminal protein (TP). Here we present a method to amplify in vitro heterologous DNAs using the Φ29 DNA replication machinery and producing DNA with TP covalently attached to the 5' end. The amplification requires four Φ29 protein...
متن کاملNovel dimeric structure of phage ϕ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition
Protein p56 encoded by the Bacillus subtilis phage φ29 inhibits the host uracil-DNA glycosylase (UDG) activity. To get insights into the structural basis for this inhibition, the NMR solution structure of p56 has been determined. The inhibitor defines a novel dimeric fold, stabilized by a combination of polar and extensive hydrophobic interactions. Each polypeptide chain contains three stretche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & genetic systems
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2012